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Abstract This paper presents a vision-based system to sup-

port tactical and physical analyses of futsal teams. Most part

of the current analyses in this sport are manually performed,

while the existing solutions based on automatic approaches

are frequently composed by costly and complex tools, devel-

oped for other kind of team sports, making it difficult their

adoption by futsal teams. Our system, on the other hand,

represents a simple yet efficient dedicated solution, which

is based on the analyses of image sequences captured by

a single stationary camera used to obtain top-view images

of the entire court. We use adaptive background subtraction

and blob analysis to detect players, as well as particle filters

to track them in every video frame. The system determines

the distance traveled by each player, his/her mean and max-

imum speeds, as well as generates heat maps that describe

players’ occupancy during the match. To present the col-

lected data, our system uses a specially developed mobile

application. Experimental results with image sequences of

an official match and a training match show that our sys-

tem provides data with global mean tracking errors below

40 cm, demanding on 25 ms to process each frame and, thus,

demonstrating its high application potential.
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1 Introduction

The professional sport activity has become, on the last dec-

ades, more and more competitive. In such a high perfor-

mance level, small modifications on actions of athletes can

produce better results and lead to victory [24,30]. To achieve

this goal, team staffs play an important role by analyzing

athletes performances. Those professionals constantly study

the decisions of athletes to verify possible improvements

that can benefit them both tactically and physically [37,44].

In futsal, such analyses are fundamental to understand

what is happening in the game and to identify errors. Through

those observations, coaches can perceive tactical patterns

used by teams, refine strategies, verify players physical effi-

ciency and better adapt training routines [49,33,30].

To correctly identify the tactical patterns and to verify

player’s physical aspects, it is necessary, at first, to correctly

estimate the positions of the athletes at a given instant of

time and, consequently, track them [30]. Through this esti-

mate, one can define the trajectories of players and extract

key statistics for the analyses.

Most part of the current analyses, however, are man-

ually performed, conducted by staff members or special-

ized companies [16,30]. The matches are recorded in video

and reviewed exhaustively so that observations are made,

registered and passed later to coaches. Those approaches

are prone to human error, demanding on significant time

and financial costs. On the other hand, some technological

solutions based on automatic approaches have been devel-

oped, capable of speeding up the statistics extraction pro-

cess and helping teams on match analyses [5,3,1,4]. Unfor-

tunately, they are, in most cases, composed by costly and

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
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complex tools, developed for other kinds of sports (e.g. soc-

cer and basketball), making it difficult their adoption by fut-

sal teams. Additionally, some of the information obtained is

only available several days after the game, what limits their

use by technical staff on post-match training [16].

In this context, this work proposes a vision-based system

to support tactical and physical analyses of futsal teams, by

automatically detecting and tracking players in video frames

with low human intervention. A vision-based solution to the

domain of futsal is characterized by several challenges. These

include, but are not limited to, illumination variation, cam-

era lens distortion, appropriate coverage of the scene of the

match, usage of bright reflective materials on the court, play-

ers’ occlusions, players with very fast motion dynamics, shad-

ows cast by the futsal gym and players, object shape defor-

mation due to fast motion, objects we consider as ‘noise’

such as the fans, the coaches standing on the sideline, the

reserve players warming up, ground staff and so on.

The tactical data provided by the proposed system con-

sist of player’s court occupancy heat maps, while the phys-

ical data consist of mean and maximum speeds, as well as

the distance covered by each one of the athletes. In order

to detect players in images, we use an adaptive background

subtraction method based on mixture of Gaussians [34,50]

and blob analysis to check geometric constraints of the blobs

in the resulted binary images. To track multiple players in

successive frames and estimate their positions at a given in-

stant of time, we use particle filters [34]. Each player de-

tected is automatically tracked by a separate particle filter.

For the sake of solving data association between detections

and trackers in each frame, our system uses the well-known

Hungarian Algorithm [34,25]. If a detection is associated

to a tracker, it is used to guide the particles of the associ-

ated tracker. Otherwise, filter’s prediction and the appear-

ance model of the player, based on color histograms, are

used to estimate the position of the player at that time. The

initial identification of the players is made in a semi-automatic

way: an operator of the system is responsible to provide the

identity of each player’s tracker. With the position data of

players extracted and their identification, we can extract tac-

tical and physical data of the athletes. Finally, the data are

presented to coaches and trainers through a mobile applica-

tion specially developed to run on smartphones and tablets,

that queries the database of the system.

That said, the main contribution of this work consists

in to present and validate a complete, simple and effective

vision-based system to support tactical and physical analy-

ses in futsal. Unlike most part of the previous works, which

are based on complex architectures constituted of multiple

cameras (eventually combined with other types of sensors)

and developed for other kinds of sports, our solution uti-

lizes a single stationary camera that monitors the entire court

area and captures top-view images, consequently reducing

the undesired effects of occlusions among players. The lack

of studies based on simpler image acquisition systems turns

our work an important contribution on its research area. More-

over, our system also presents a semi-automatic approach to

segment actions of interest (e.g. free kicks, goals, passes,

fouls, among others) during the game, what differentiates it

from most previous solutions that usually provide this kind

of information only a posteriori, limiting their applications

by technical staff on post-match analysis. Instead, by using

our solution, one member of the technical staff runs a com-

mand in a mobile application at the moment when an impor-

tant game action occurs. The system can then edit a video

file that contains some anterior and posterior actions along

with the one of interest and make it available for streaming

in the mobile device. The coaches and trainers can show this

video slice to players to correct team flaws or to show weak-

nesses of the opponent team. Finally, we believe that our

paper contributes to demonstrate the actual applicability of

some well-known computer vision methods, when they are

combined to estimate critical metrics used to analyze tac-

tical and physical performances of a futsal team. As far as

we know, this is the first work in the literature to propose

such a simple and dedicated system for futsal, which might

be of special interest to elite coaches and sports science re-

searchers. It is important to emphasize that futsal is a very

particular and dynamic team sport, whose players are often

in touch, concentrated in small areas and moving quickly.

Therefore, a number of difficulties have to be faced and

overcome in order to develop a computational solution capa-

ble of providing useful data for the analyses. This means that

vision-based solutions developed for other kinds of sports

are not simply adapted to futsal. Certainly, from this kind of

study, new research efforts could be derived in order to de-

velop more robust computer vision algorithms to, for exam-

ple, people detection and tracking in very complex contact

scenarios, such as the ones observed in futsal matches.

The vision system presented in this paper builds on our

previous work [34], which describes an effective particle

filter-based approach for predictive tracking of futsal players

in scenes monitored by a single stationary camera, with (1)

an updated and more comprehensive discussion of related

work, (2) the description of all modules and capabilities of

the proposed system, (3) improvements on the players de-

tection algorithm, which now explores players appearance

based on color information and uses the players’ feet posi-

tions to specify their locations on the court, (4) a new set of

experiments on an official match dataset and (5) a detailed

analysis of the system’s performance.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the related work. Section 3 introduces some

fundamentals of our approach. Section 4 covers the pro-

posed system. Experimental results are presented in Section

5, followed by the concluding remarks in Section 6.
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2 Related Work

Several works have explored tactical and physical analyses

in sport. The technologies used for detection and tracking,

the core steps for those analyses, can be divided in two cat-

egories, as proposed in [39]: (i) intrusive, in which wireless

sensors and tags are placed on players and ball; and (ii) non-

intrusive, in which there are no extra objects placed in the

game participants. In the next sections, we briefly describe

those technologies and review the state-of-the-art.

2.1 Intrusive Systems

As intrusive systems make use of wireless tags and sensors,

they are sensitive to signal collisions and interferences. The

signals must be strong enough to be detected by antennas

positioned around the game region, and tags must be light

and small enough to allow players to perform comfortably

and efficiently [39]. However, intrusive systems identify an

object of interest, among a set of similar objects, in a precise

and fast way, thus minimizing identity switches [28].

Different technologies can be used to detect and track

players on this kind of systems. Microwave [9] and Radio

Frequency Identification (RFID) [28] approaches use trian-

gulation and arrival times of signals to estimate player po-

sition. In the Local Position Measurement (LPM) approach

[3], the RFID sensors also emit microwaves to transmit per-

formance data (e.g. position, speed, distance traveled) to a

set of base stations. Another intrusive technology used for

tracking is Ultra Wide Band (UWB) [7]. Its use can be ad-

vantageous in situations where there is no line of sight, and

it determines player location based on Time Difference of

Arrival (TDOA) and Angle of Arrival (AOA) [39]. Finally,

there are some works that make use of Global Navigation

Satellite System (GNSS) [1] and Global Position System

(GPS) [45] to track players. GPS approaches, however, are

not commonly used on indoor sports, as they can not, in

most cases, estimate player position precisely and have poor

efficiency levels in such environments.

2.2 Non-intrusive Systems

Non-intrusive systems are usually based on either infrared or

computer vision techniques that use video cameras strategi-

cally positioned around the game environment [39,16]. This

solution is widely adopted because it does not interfere in

game action with extra apparatus inclusion and can ally ro-

bustness, confidence and performance levels.

In the field of detection and tracking of players for tac-

tical and physical analyses, different image sources can be

used. Some works are based on fixed cameras [30,10,11,24,

18,20,32,17,46,38], since they can capture, in most cases,

all players actions in the game region, while moving cam-

eras or broadcast images, on the other hand, can not always

view all players in the scene during the entire game, which

causes the loss of certain actions. Nevertheless, many works

in that field use these types of image sources [22,35,49,15,

23,31], as they are most likely easier to obtain.

For the detection step, different techniques can be ap-

plied. Some papers use segmentation and morphological op-

erations to detect players. In [13,22,17,15,46], a model that

represent the game region is built based on color informa-

tion, that is, the predominant game region color is used to

create a color model of the background, allowing the extrac-

tion of regions that contain players. Similarly, the authors

in [38,31] use histograms and color distributions to build a

model that represents the player and it is used on the seg-

mentation process. This model is built from players samples

manually collected in a training phase. The detection step

using color-based techniques is usually fast, but it is very

sensitive to illumination variations, which may reduce their

robustness and precision. Moreover, the techniques in [38,

31] demand on a laborious training step.

Adaptive background subtraction methods based on mix-

ture of gaussians, in turn, are more resistant to illumination

variations [50,40]. On the other hand, they are slower than

color-based methods, and if the target stays static for suffi-

cient time, it can be incorporated by the background model

and, consequently, not be detected.

Other works adopt non-supervised training techniques,

as an initial step of detection. One of the most explored

is the training based on the use of Haar cascade classifiers

[43]. In [30], the samples are manually extracted from game

scenes, while in [26] the samples are automatically obtained

from color-based segmentation. With the trained classifier, it

is possible to detect players instances in images effectively.

Unfortunately, the training phase has a high complexity cost

and demands on a large number of samples. Furthermore,

the detection process with this method is slow and it is more

appropriate for post-game offline analyses.

Probabilistic approaches may be used with some of the

previously described techniques to improve the detection,

either in a multi-camera [30,10,11,47] or in a single-camera

setup [19]. In a multi-camera setup, the authors in [30], for

example, combine the detections in images from each cam-

era made by Haar detectors in a multiple-hypothesis func-

tion. That function represents the likelihood of a player to

be found in a certain court position, and it is built through

the projection of the player location image coordinates in

a virtual court plane. In [47], in turn, the authors present a

multiple object tracking method based on a Bayesian formu-

lation that uses the Reversible Jump Markov Chain Monte

Carlo (RJ-MCMC) method. Target creation and removal are

directly integrated into the probabilistic tracking framework.

However, that approach requires global scene likelihood mod-

els involving a fixed number of observations (independent

from the number of objects), which are sometimes diffi-
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cult to obtain. On the other hand, the authors in [10,11] use

background subtraction together with the Probabilistic Oc-

cupancy Map (POM) [18] technique to detect the players in

different situations. In a single-camera setup, the authors in

[19] use likelihood maps to estimate the locations of players

based on their color distributions.

Regarding the visual tracking of multiple players, dif-

ferent approaches can also be found in the literature [36,

47]. The use of predictive filters is widely adopted in many

papers [8]. In [46,13], Kalman filter is used to estimate the

speed and position of players and link their trajectories. How-

ever, Kalman Filter is not adequate for multiple-hypothesis

processes. For this reason, many authors choose to use Par-

ticle Filter for players tracking [34,30,24,49,15]. The com-

plexity cost, in that case, increases proportionally with the

numbers of players tracked. The players tracking approach

of the vision system proposed in this paper belongs to this

group of particle filter-based solutions.

Another approach on multiple players tracking is graph-

based multiple-hypothesis and trajectory analyses. Graphs

that represent the possible players’ trajectories are built, mod-

eling their positions in a given instant of time along with

their transitions between frames [32,41,20,35,11,10]. The

trajectories of players are searched in the graph using a sim-

ilarity measure [32,41], K-Shortest Paths and linear pro-

gramming [11], multi-commodity network flow [10] or mod-

eled as a minimum edge cover problem [20,35]. Graph-based

methods commonly have a high complexity cost and it is

difficult to achieve real-time results in those approaches.

Finally, it is worth mentioning some popular commer-

cial non-intrusive systems that can be found. One widely

adopted by many teams in different sports is SportVU [5],

that uses a set of fixed cameras installed around the game re-

gion and computer vision to track players in real-time. Other

commercial vision-based tools can also provide this sort of

information (e.g. StatDNA [6], Dartfish [2] and Opta [4]),

but they focus on post-game analyses and some operators

are responsible to extract the data manually.

3 Fundamentals

In this section, we briefly introduce some fundamentals to

better understand our system, which uses a Bayesian filter-

ing approach based on the so-called particle filter [12] to

track players in a match.

Bayesian theory is a branch of probability theory that al-

lows people to model the uncertainty about the world and

the outcomes of interest by incorporating prior knowledge

and observational evidence [14]. In other words, Bayes the-

orem is a mechanism for updating knowledge about some

target state in the light of extra information from new data.

In the Bayesian approach to dynamic state estimation,

one attempts to construct the posterior probability density

function (pdf) of the state based on all available information,

including the set of received measurements, considering the

probability as a conditional measure of uncertainty [8].

From a Bayesian perspective, the tracking problem can

be reduced as to recursively calculate some degree of belief

in a state st at time t, taking different values, given the mea-

sured data zi, for i = 1, ..., t. This way, Bayesian approaches

assume the dynamic system is Markov - that is, the current

state variable st contains all relevant information [12]. The

measurement part of the Bayesian formulation is given by

the likelihood function.

The problems in which an estimate is required every

time a measurement is received can be convenient solved by

applying a recursive filtering approach, where the received

data can be processed sequentially [8]. To estimate present

state based on past data, Bayes filters use a conditional prob-

ability P(st |st−1) to describe the system dynamics, that is,

how the system’s state changes over time. In location esti-

mation, this conditional probability is the motion model -

where the object might be at time t, given that it was previ-

ously at a specific location at state st−1 [12].

4 The Proposed System

This section describes the proposed system to support tacti-

cal and physical analyses of futsal teams, which is divided

in five main modules, as illustrated in Fig. 1. The first mod-

ule performs the acquisition of image sequences of the game

by using a single stationary camera. The second module is

responsible to detect players in the game region, what is

achieved by using an adaptive background subtraction method

based on a mixture of gaussians [34,50] and on geometric

constraints to check blobs sizes in the resulted binary im-

age. In the third module, the proposed system performs the

tracking of players, by using particle filters [34]. Specifi-

cally, each player detected is tracked by a separate particle

filter. In addition, by using the third module, an operator can:

(1) make the initial identification of each player, (2) manage

identity switches involving different trackers, (3) re-identify

a specific player, whose tracking has been interrupted and

(4) start or stop the statistics computation. The fourth mod-

ule, in turn, computes and stores tactical and physical data

about the players, such as, court occupancy heat map, mean

and maximum speeds and the distance covered by each one

of the athletes. Finally, the fifth module consists in the end

user interface of the system, in which the technical staff of a

team may formulate their queries. The five steps aforemen-

tioned are described in the following.

4.1 Image Acquisition

The first module is responsible to acquire image sequences

of the game. Image acquisition architectures differ on the

number of cameras and in how they are located on the sports
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A Vision-Based System to Support Tactical and Physical Analyses in Futsal 5

Fig. 1 Overview of the proposed system.

venue. Multiple fixed cameras allow to cover all the field of

view and may ease the detection and tracking methods to

be applied afterwards. However, those setups demand on so-

phisticated algorithms to solve the data association problem,

in which we determine the correspondence between targets

in different cameras. Moreover, the transmitting video data

can require lots of bandwidth and will probably be more ex-

pensive than a single-camera system because of the extra

sensors and the supporting infrastructure demanded. Con-

sidering those drawbacks of multiple-camera setups, we pro-

pose a solution based on the usage of a single stationary

camera, c, placed in such a way it can capture top-view im-

ages of the court, as illustrated in Fig. 1. With this setup we

reduce the effects of occlusions among players.

The camera used is the PROSILICA GC750 with Giga-

bit Ethernet interface. Images are acquired at 30 frames per

second with dimensions of 752×480 pixels. To capture the

entire court, we make use of a COMPUTAR manual var-

ifocal wide angle lens with focal length ranging from 1.8

to 3.6 mm (model T2Z1816CS). Unfortunately, this kind of

lens causes substantial undesirable spherical distortion on

the images, as illustrated in Fig. 2(a).

In order to reduce the negative effects of such distor-

tion, the camera is calibrated with the algorithm proposed

by Zhang [48], so that its intrinsic parameters are estimated

and used to undistort the images. Additionally, as only the

court area contains relevant information, the undistorted im-

age is adequately cropped to represent the region of interest,

thus reducing the amount of pixels to be processed and re-

sulting in a court image as the one illustrated in Fig. 2(b).

Once the camera pose has been properly determined, the

image acquisition module also computes two different ho-

mographies H1 and H2. The homography H1 is used to map

points in the camera’s image plane to their corresponding

ones in the court area, which is essentially a plane in the

world coordinate system. Based on H1, the system estimates

the distances traveled by the players and their speeds. The

homography H2, in turn, maps points in the camera’s im-

age plane to their corresponding ones in a virtual plane, as

shown in Fig. 7(a). Therefore, H2 is responsible to support

the creation of a player’s heat map, which is an indicator of

his/her presence in different parts of the court. The map gets

heated up in areas where the player has had more control of

the ball and does most of his/her work, i.e it turns redder as

the player’s presence in a particular area increases. To esti-

mate H1, we identified a set of 67 static scene points in the

court (e.g. the center of the court, its corners, among oth-

ers) whose positions are known in a world-coordinate sys-

tem and find their corresponding positions in pixels in the

camera’s image plane. All those points are shown in green

in Fig. 2(b). On the other hand, to estimate H2, we have used

a subset of 25 points, which are shown in red in Fig. 2(b) and

can also be found in the virtual plane illustrated in Fig. 7(a).

4.2 Players Detection

The second module of the proposed system performs the de-

tection of players in the game region. To achieve this goal,

we use an adaptive background subtraction method based

on Gaussian Mixture Models (GMM), as proposed in [50].

Frequently, the scene background presents some regular be-

havior that can be described by a model. With this model,

it is possible to detect a moving object by searching image

pixels that does not fit the model.

In our solution, the background model B is estimated

from a training set denoted as S. This training set is built

from pixels values x sampled over a time period ∆T , so that

at time t we have S∆T = {xt ,xt−1, ...,xt−∆T}, and the esti-

mated background model is denoted by p̂(x|S,B) [50].

Over time, each new sample is incorporated to the set

and the old ones are discarded, so that the model is updated

in order to adapt to changes in the scene. In the recent sam-

ples, however, there could be some values that belong not

only to background but also to foreground objects, repre-

sented by the foreground model F . This estimative should
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6 Pedro H. C. de Pádua et al.

(a) (b)

Fig. 2 (a) Example of court image captured by our system, suffering from spherical distortion. (b) Static scene points used to estimate H1 and H2.

be denoted by p(xt |S∆T ,B+F) and in a GMM with M com-

ponents, is given by [50]:

p̂(x|S∆T ,B+F) =
M

∑
j=1

π̂ j ·N (x; µ̂ j, σ̂
2
j I), (1)

in which µ̂ j is the estimate of the mean of the jth Gaus-

sian component and σ̂2
j is the estimate of the variances that

describe the jth Gaussian component. The covariance ma-

trices are assumed to be diagonal and I, the identity matrix,

has proper dimensions [50]. The mixing weights (the por-

tion of data accounted by the jth Gaussian), denoted by π̂ j,

are non-negative and normalized in such a way they sum to

one. The weight π̂ j may be considered as the probability of

a sample being derived from the jth Gaussian component.

In other words, the weight π̂ j specifies the amount of time

that certain intensity values (and, similarly, color values) are

captured from the scene. This means that the estimation of

Gaussian components that correspond to background colors

is based on the persistence and variance of each component

of the mixture. The likely background colors are those that

are captured from the scene during longer periods of time

and present a more stable behavior [40].

To estimate the background model from the mixture,

the algorithm assumes that Gaussian components having the

most supporting evidence and the least variance are most

likely to be part of the background. To determine those com-

ponents, our approach considers that the background con-

tains L most likely intensity values. In a clustering approach,

static objects tend to form large and concise clusters of pix-

els with the same value, while moving ones tend to form

sparse clusters. This way, the intruding foreground objects

will be represented, in general, by some additional clusters

with small weights π̂ j [50]. The background model can be

approximated by the first L largest clusters:

p(x|S∆T ,B)∼
L

∑
j=1

π̂ j ·N (x; µ̂ j, σ̂
2
j I). (2)

Sorting the components by their weights π̂ j in descending

order, we obtain:

L = argmin
l

(

l

∑
j=1

π̂ j > (1−β )

)

, (3)

in which β is a measure of the maximum portion of data that

can belong to foreground objects without influencing the

background model [50]. This way, the first L of the ranked

components whose weights exceed (1− β ) are deemed to

be the background.

A limitation present in earlier background subtraction

based on GMM approaches was caused by the use of a fixed

number of Gaussian components for each pixel over the time.

To increase the accuracy and reduce computational cost, the

technique in [50] applies an online procedure to constantly

update not only the GMM parameters but also the number of

components to be used. Given a new data sample xt at time

t, the recursive update equations are:

π̂ j ← π̂ j +α · (ot
j− π̂ j)−α ·ρ, (4)

µ̂ j ← µ̂ j +ot
j · (α/π̂ j) ·δ j, (5)

σ̂2
j ← σ̂2

j +ot
j · (α/π̂ j) · (δ ∆T

j ·δ j− σ̂2
j ), (6)

in which δ j = xt − µ̂ j. The constant α describes an expo-

nentially decaying envelope, used to limit the influence of

the old samples and, approximately, α = 1/∆T . For a new

sample, the ownership ot
j is set to 1 for the “close” com-

ponent with the largest weight π̂ j and the others are set to

zero. A sample is said “close” to a component if the Ma-

halanobis distance from the component is for example less

than three standard deviations. The squared distance from

the jth component is calculated as D2
j(xt) = δ ∆T

j ·δ j/σ̂2
j . If

there are no “close” components, a new component is gener-

ated with π̂M+1 = α , µ̂M+1 = xt and σ̂2
M+1 = σ2

0 , in which

σ2
0 is some initial variance with appropriate value [50]. If

the maximum number of components is reached, the com-

ponent with the smallest weight is discarded. Finally, ρ is
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A Vision-Based System to Support Tactical and Physical Analyses in Futsal 7

the negative Dirichlet prior weight, which will suppress the

components that are not supported by the data. If a compo-

nent has negative weights, it is discarded. After each update,

the weights are again normalized.

At the beginning of the execution, the GMM is started

with one component centered on the first sample. New com-

ponents are added or discarded as aforementioned, so that

the number of components is dynamically updated and the

background model is effectively estimated. Pixel values that

do not fit the model are thus considered as belonging to

the foreground, until there is a Gaussian component with

enough evidence to support their inclusions in the background.

In the detection process, only regions inside the court area

are considered, to avoid that the movement of coaches, ref-

erees or even supporters lead to wrong detections.

To increase robustness, it is necessary to detect mov-

ing shadows pixels upon pixels labeled as foreground. In

the background subtraction process, a pixel is detected as

shadow if it is considered as a darker version of the back-

ground, defined by a threshold τ . As shadows pixels are

marked with a specific value in the resulted image (127 in

the present case, resulting in grey pixels), they can be easily

removed with a simple threshold operation. Then, we have a

binary image in which black pixels represent the background

and white pixels represent foreground objects.

The second step of our player detection approach is to

perform some morphological operations, as opening (to re-

move noise pixels and small objects) and closing (to remove

small holes on foreground blobs). At this moment, bound-

ing rectangles are assigned to each blob as possible players

locations creating a set R of regions of interest.

All regions in set R must be checked against some ge-

ometrical constraints, to verify if they really correspond to

players, given their respective width and height and their po-

sitions. The i-th region in R is discarded if wi < wmin or

hi < hmin, in which wi and hi denote the width and height

of the i-th region, respectively, and wmin and hmin are the

minimum values for width and height that a region may as-

sume to represent a potential player in the scene. Similarly,

our approach evaluates if wi > wmax or hi > hmax, in which

wmax and hmax are the maximum values for width and height

for a region that may represent a player. In those cases, if

wi > wmax or hi > hmax, the approach recursively splits the

region into smaller rectangles until they meet the dimensions

constraints and, in the following, updates the set R.

To process only detections that are inside the court area,

the proposed approach considers the players’ feet positions

instead of the centroids of their corresponding regions in R.

By doing so, we have increased the accuracy of our system

to determine the players’ locations on the court. Our key ob-

servation is that the perspective projection effect, especially

in regions that are distant from the image center, makes the

centroid of a detected player an unreliable cue about its ac-

tual location, as illustrated in Fig. 3(a). In contrast, by as-

suming the player’s location is given by the position of the

point between his/her feet, our approach can deal with par-

ticular situations, as for example, when a player runs near

the boundaries of the court or when he/she is performing a

throw-in. Usually, in those situations, differently from the

player’s feet, the centroid is outside the court area.

To estimate the location of a player from his/her feet po-

sitions, the centroid of his/her corresponding region is con-

nected through a line segment to the image center. Specifi-

cally, the intersection point between such a line segment and

the bounding rectangle of a player is considered as his/her

location estimated from his/her feet, as illustrated in Fig.

3(b). If the line segment does not intersect the bounding

rectangle, that is, the line segment is completely inside the

rectangle, the centroid of the region is then considered as the

estimate of the player’s location. Thus, given the estimated

locations of players in the camera’s image plane, the homog-

raphy H1 is used to compute their corresponding ones in the

court area and check if the detected objects are inside the

limits of the court. If a specific detection is not inside the

boundaries of the court, it is discarded.

The final step of the detection module consists in to com-

pute an appearance model that captures the color informa-

tion of the player and is later used by the tracking module.

The appearance model consists of 3 normalized color his-

tograms, with 16 bins each, which are built in the HSV space

(one histogram for each channel).

4.3 Players Tracking

The third module performs the tracking of players, that is, it

estimates players positions at a given time and link their de-

tections over successive frames. In this work, we make use

of Particle Filter for this task [34]. Particle filter is a pre-

dictive filter, which uses information from the present state

of an object to infer its state in the next instant of time. To

make this possible, the filter uses a motion model, which

describes the motion dynamics of the objects. Through this

model, the filter can make a prediction of the position of the

object in the next instant of time, which is corrected by an

observation model (e.g. the position of the detected player),

since it is not exactly known how the object is moving at

that moment. With this adjustment, we minimize the effects

of accumulated errors that can lead to erroneous predictions.

If it is not possible to directly observe the object (for exam-

ple, in a miss detection), the filter uses only the prediction to

keep tracking it until the object can be detected again.

To work with multimodal functions, as in the present

case, the filter models its probability functions using a set

of N samples, or particles – hence the origin of its name.

Each particle i has at a time instant t a state si
t , which con-

tains an information that represents the player. Each particle

has also a weight wi
t , which refers to how good that sample
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8 Pedro H. C. de Pádua et al.

(a) (b)

Fig. 3 (a) Centroids and feet locations of players: blue arrows indicate the centroids locations, while green arrows indicate the feet locations. (b)

Lines connecting the centroids of detected regions to the image center.

is, or, in other words, what is the likelihood of the player

to be found in that position if an observation is made at that

instant. In the proposed work, we use a vector with four vari-

ables to model the state of a player, so si
t = [x y vx vy]

T , in

which the first two variables are the position in 2D space, vx

is the velocity on x axis and vy is the velocity on y axis. The

estimated state of the player tracked, ŝt , is given by:

ŝt =
N

∑
i=1

wi
t · si

t . (7)

We start tracking a player from its first detection. To each

new detection is associated a tracker, consisting of its own

particle filter, the player identification, his/her position his-

tory and his/her appearance history. The tracker is consid-

ered “valid” if the player associated to it is detected on a

minimum number of frames, denoted by γmin. By “valid”

we mean that the tracker can compute the trajectories of

the player, to avoid computing trajectories of some tracked

objects generated by noise detection. In the same way, a

tracker can only live without an associated detection for a

limit number of frames, γlim, being removed after that.

When a new tracker is created at time t0, a set of N par-

ticles is created with states si
t0
= [x y vx vy]

T . The values

of x and y are computed according to a normal distribution

around the position of the associated detection with variance

σ2
x,y. Moreover, vx and vy are initialized with values equal to

zero. All particles have the same weight, that is wi
t0
= 1/N.

Next, an iterative process begins, which is repeated for

every new frame, consisting of the resample, propagation

and observation phases. In the following, we describe each

one of those phases, considering t as the current time.

4.3.1 Resample

In this phase, particles are resampled according to their wei-

ghts in order to build a new set with N samples based on

the previous one. In a [0,1] closed interval, we map portions

of this interval to each one of the particles, in such a way

that those with larger weights receive larger portions. We

then generate a random number n and we choose the particle

that has the interval which contains n. This way, we benefit

particles with larger weights, but we still admit repetitions

and also allow small weight particles to be selected.

4.3.2 Propagation

In this phase, we propagate the particle set by using the mo-

tion model to build the estimate of state st+1. That is, we

basically make a prediction of the next state. We employ the

constant velocity motion model in this work, as proposed by

the authors in [30], motivated by the fact that the variations

between frames are very small when images are captured at

30 frames per second. Because of that, this model is able to

manage sudden changes of directions of the players motion,

including those movements that depend on the ball position

in the field. In this model, we have:

(x,y)t+1 = (x,y)t +(vx,vy)t ·∆ t, (8)

(vx,vy)t+1 = (vx,vy)t , (9)

in which ∆ t is the time step. However, as the particle filter

deals with the likelihood of an event, there are uncertainties

that should be considered. Those uncertainties can be seen

as the process noise and we model it as random errors from a

zero mean normal distribution with variance σ2
vx,vy

, which is

empirically defined. Such errors help differentiate the state

of repeated particles, improve the representativeness in that

point and avoid repetitions that break the tracking step [30].

With a time step ∆ t = 1/30, the model can be rewritten

in matrix terms as:

st+1 =









1 0 1/30 0

0 1 0 1/30

0 0 1 0

0 0 0 1









·

















x

y

vx

vy









t

+









0

0

evx

evy

















, (10)

in which evx and evy are the process noise.
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4.3.3 Observation

In this phase, the estimates are adjusted by an observation

model z of the object, to confirm or correct them. At this mo-

ment, we compute the new particle weight, which denotes

how good that representation is. In other words, what is the

likelihood of the player be found in that position if an ob-

servation is made at that moment, denoted by P(st+1|zt+1).
As we are tracking players and estimating their positions,

we adopt a model in which zt+1 = [x y ]⊤t+1, so only the

position information is considered.

As we deal with multi-player tracking, it is necessary to

decide which detection should guide each tracker, to adjust

its prediction in this phase. This way, each tracker should

be associated with one detection at most and this problem is

called an association problem. To solve it, we apply the well-

known Hungarian Algorithm [25]. This technique calculates

the cost of all association possibilities, given in our work by

the Normalized Euclidean Distance between a position of

one detection and the predicted position of a tracker. The

algorithm makes the appropriate associations in such a way

that each tracker is associated with one detection at most

with the smallest possible cost, in polynomial time.

With all associations made, we check if each cost given

is smaller then a threshold λ , which controls the maximum

acceptable cost. We do this to minimize unreal situations,

most likely caused by false positive detections (e.g. a player

that is detected at the penalty mark in one frame and in the

next he/she is detected at the center of the court, being im-

possible to a human to travel such distance in such a small

period of time). If a detection that does not really exist is as-

sociated to a tracker, this tracker uses only its prediction and

appearance data to correct its estimate. When the number of

strikes is larger than γlim, the tracker does not have detec-

tions associated to it for a substantial number of frames and

then we remove it. On the other hand, if a valid detection is

associated to the tracker, we use it to adjust the prediction.

To estimate the particles weights, two different methods

are used, which are chosen in accordance with the existence

or not of a detection associated to the tracker. Considering

such an existence, we compute the Euclidean Distance d be-

tween the position (x,y) of the i-th particle at state si
t+1 and

the player’s location according to his/her corresponding de-

tection. We use d in a normal probability density function

that returns the particle weight and is given by:

1√
2πσ2

· e
(

− d2

2σ2

)

, (11)

in which σ2 = σ2
x,y. We set the initial variance σ2

x,y for the

position based on the mean size of the player in images. Dur-

ing tracking, that variance is inversely proportional to the

number of successfully tracked frames for a player (down to

a lower limit θl). Hence, the longer a player is tracked suc-

cessfully, the less the particles are spread. In the same way,

when it is not possible to detect the player associated to a

tracker, we increase the variance up to a higher limit θh, to

spread the particles and to make better estimates.

On the other hand, if there is no detection associated to

the tracker, the particle weight is computed by a four-step

method that combines prediction and appearance data. The

first step consists in to estimate the particle’s appearance

model, which similarly to the player’s appearance model,

consists of 3 normalized color histograms, with 16 bins each,

which are built in the HSV space (one histogram for each

dimension). In a second step, the method computes the sim-

ilarities between the estimated particle’s appearance model

and all the other models previously computed by the tracker.

The largest similarity value obtained is returned. To com-

pute the similarity between two models, the method uses his-

togram correlation. In this case, the values 0 and 1 represent

the smallest and largest similarities, respectively. Therefore,

analogously to the strategy used in [30], by considering an

appearance model A as a list of 3 histograms and Ai as the i-

th histogram in this list, we compute the similarity between

two appearance models A1 and A2 as follows:

fs(A1,A2) =
3

∏
i=1

fc(A
i
1,A

i
2), (12)

in which fs(·) is the similarity measure between two mod-

els and fc(·) is the correlation function between the count-

ing values obtained from the histograms bins. The largest

similarity value obtained, fs
max, is used in a probability den-

sity function given by 5 · ( fs
max)5, which is empirically de-

termined, in such a way that particles that are less similar

to the tracker have smaller weights, while particles that are

more similar have larger weights. The third step, in turn, is

analogous to the scenario when a detection is associated to

the tracker. However, the Euclidean Distance d is now com-

puted between the position (x,y) of the i-th particle and the

mean position of the estimate in the propagation phase. The

fourth and final step consists in to perform a weighted sum to

combine the weights obtained in the second and third steps.

Thus, the particle weight for the case when there is no de-

tection associated to the tracker is given by:

wsum ·ws +(1−wsum) ·wd , (13)

in which ws is the weight of the similarity obtained in the

second step, wd is the weight of the Euclidean distance ob-

tained in the third step and wsum is a factor that determines

the contribution of each one of the variables in the composi-

tion of the particle’s weight.

Afterwards, we normalize the weights so that they sum

up to one. From that, the estimated state ŝt+1 of the tracker
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10 Pedro H. C. de Pádua et al.

may be computed again by using Equation (7) and the parti-

cle filter is ready for a new cycle. For each iteration, our ap-

proach stores in the tracker history the location of the player,

given by its estimated state, so that we can compute his/her

trajectories over time, as well as his/her statistics of interest.

Importantly, an operator manually performs the initial

identification of each player to be tracked through the play-

ers tracking module. The operator sets the tracker’s identifier

with the player’s number and informs the team he/she be-

longs to. The operator is also responsible for undoing com-

plex confusing situations during the game as, for example,

cases of identity switches involving different trackers. In ad-

dition, the operator can perform the re-identification of a

specific player who has been tracked, but had his tracking

interrupted by any reason. Finally, the operator is respon-

sible to start and stop the statistics computation, in order to

avoid that interruptions during the game can affect and dam-

age the physical and tactical data computed.

4.4 Statistical Data Storage

Once the players trajectories have been obtained, the fourth

module performs the computation of players statistics. The

statistical data estimated consist of occupancy heat maps

(tactical data), as well as distance covered, mean and maxi-

mum speeds of players (physical data).

To estimate the player’s heat map, the corresponding

tracker holds an occupancy matrix with the same dimen-

sions of the virtual court illustrated in Fig. 7(a). At each time

instant t, that is, at each frame processed, our approach esti-

mates the player’s location in the image plane, which is then

mapped to the virtual court by using the homography H2.

Next, our approach increments the occupancy matrix po-

sition that corresponds to the mapped location. When the

tracking of a player is ended, the occupancy matrix stores

the court positions that have been visited and the number of

times that the player was present in those positions. Finally,

by using a colormap and the aforementioned occupancy ma-

trix, the player’s heat map is obtained and stored.

On the other hand, differently from the heat map compu-

tation, our approach computes the physical data of a player

only at a rate of 15 frames per second. This sampling rate is

adopted because of two main reasons. Firstly, note that our

solution captures images at 30 frames per second. At this

frame rate, the distances traveled by the athletes and, conse-

quently, their speeds do not vary significantly between con-

secutive frames. Therefore, to estimate physical data at ev-

ery time instant creates an unnecessary computational cost.

Secondly, the estimated location of a player may sometimes

modify significantly between frames, even when the player

has moved himself/herself very little. This occurs because of

the size variation of the bounding rectangle assigned to the

blob that potentially represents the player. In this case, the

Fig. 4 Example of a tracking interruption event of a specific player.

player’s location estimated from his/her feet may alter in a

significant manner and, thus, add errors to the statistics com-

puted. For those reasons, we have performed a careful analy-

sis about the most appropriate sampling rate to be used. This

analysis was based on a statistical test, which is described in

the experimental results section, and concludes that a rate of

15 frames per second was adequate for our application.

Basically, for every 15 frames, the current and imme-

diately preceding locations of the player are mapped to the

court area by using the homography H1. Next, the Euclidean

distance is calculated between those locations. The value ob-

tained is added to the variable of the tracker responsible for

storing the distance covered. By using the distance infor-

mation, in turn, the player’s speed is derived. The maximal

speed of a player is given by the largest “current” speed

estimate. Such estimate of speed is computed by dividing

the Euclidean distance obtained at this stage by the period

of time between the computations (0.5 seconds, since the

statistics are calculated every 15 frames). Finally, the player’s

mean speed is obtained by dividing his/her total distance

traveled by the period of time that he/she has been tracked.

The players statistics are stored in data structures at pre-

determined periodic time intervals or just before a tracker

is removed. Unlike the trackers, which are volatile entities,

those data structures can permanently keep the tactical and

physical data of the players. The information stored in the

data structures may come from different trackers. Those data

structures are still used in some special recurrent situations,

as the one described in the following.

Consider a tracking interruption event at time instant t

of a specific player, as illustrated in Fig. 4, where a player

must be re-tracked. In that scenario, the player keeps moving

along the path indicated by the dotted blue line without be-

ing detected by our system. Suppose now that at a posterior

time instant the player has been detected and, consequently,

tracked again. By observing such a situation at time t+n, the

system operator re-identifies the player and, in this case, the

data structure containing his/her statistics are retrieved and

copied to the new tracker created. Thus, the player’s tracking

and statistics computation can be properly continued.
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A Vision-Based System to Support Tactical and Physical Analyses in Futsal 11

To minimize errors in the computation of players phys-

ical data, caused by tracking interruption events as the one

illustrated in Fig. 4, we calculate the Euclidean Distance be-

tween the last estimated player’s location (at time instant

t) and the new location where he/she has been reindenti-

fied (at time instant t + n). That distance is represented by

the red dashed line in Fig. 4 and is used together with the

information about the number of frames without detection

(n = (t +n)− t) to update the player’s statistics.

Another situation that is addressed by the statistical data

storage module is the substitution of a player. In futsal, a

player who has been substituted by another one may later re-

turn to the game, if necessary. When a player leaves the court

area to be substituted, he/she is not any more detected by

our system. In this case, his/her statistics are properly stored

in the corresponding data structure before the tracker is re-

moved. Posteriorly, when that player returns to the game, the

system operator performs his/her re-identification and acti-

vates a boolean variable, which specifies that such a player

has already participated in the game. Thus, the data struc-

ture containing his/her statistics are retrieved and copied to

the new tracker created. To proceed with the computation of

physical data of a player who has been substituted, our so-

lution consider the last estimated player’s location (before

leaving the court) as his/her current one.

All the statistical data computed by our solution are stored

in a database, which receives requests for information of

end-users from a specific mobile application that is briefly

described in the next section.

4.5 End User Interface

The fifth and last module consists in the end user interface.

Basically, through this module, which has been specially

developed to run on Android mobile devices, the techni-

cal staffs of futsal teams formulate their queries regarding

the players statistics and visualize the results. The Android

platform has been chosen due to its popularity, open-source

nature for an extensive customisation and low cost. The de-

veloped application retrieves information from the system’s

database by using the open standard format named JavaScript

Object Notation, which is frequently considered as an effec-

tive and lightweight data-interchange format.

The information requested is presented on different screens.

At the beginning of the application’s execution, the first screen

presented to the end user is the list of teams. When the user

selects a specific one, a screen containing its correspond-

ing players is shown. By clicking on a player, his/her in-

formation is provided, such as name, number, position and

physical statistics collected. An additional button allows the

visualization of the player’s heat map as well.

By using the application, the user can also obtain video

segments that capture actions of interest for the analyses of

the technical staff. Specifically, the user may run a command

Table 1 Parameters’ values used in the experiments.

Parameter Value

wmin, hmin 5 pixels

wmax 40 pixels

hmax 30 pixels

N 350 particles

γmin,γlim 15 frames

σx,y 5 pixels

σvx,vy 5 pixels

θl 3 pixels

θh 7 pixels

λ 0.05

wsum 0.70

at the moment the key event occurs. The system can then edit

a video file containing some previous and subsequent game

actions along with the one of interest and make them avail-

able for streaming in the mobile device. The technical staff

can show this video segment to players to correct team flaws

or to show weaknesses of the opponent team. To achieve this

goal, a video buffer is used by our system, whose size may

be adapted according to the end user’s demand.

5 Experimental Results

In order to evaluate the accuracy, efficiency and applicabil-

ity of our system, we tested it on a challenging set of ex-

periments. Those experiments allowed us to individually as-

sess the proposed approaches for players detection, players

tracking and players statistical data computation.

We have used two datasets for this task, namely, one

dataset of an official futsal match and another one of a train-

ing match, which include different tactical and physical de-

mands players may be exposed to. Both datasets come from

the Minas Tênis Clube professional futsal team acting in

its arena. The images were captured at 30 frames per sec-

ond with dimensions of 752×480 pixels. However, as men-

tioned in Section 4.1, we crop the court region in the images,

resulting in frames with dimensions of 640×370 pixels.

We have manually annotated the positions of the athletes

in the images with a bounding box around each player, once

every 15 frames, to create the ground truth for each dataset.

The mean bounding box of a player in the images is 30×20

pixels. We chose the 15 frames time step because it would be

a very laborious task to manually set up those boxes in ev-

ery frame of the sequences. Similarly, the sequences lengths

were chosen in such a way they could provide relevant in-

formation for the tests without preventing their executions.

As shown in Section 4, different parameters must be ini-

tially defined, so that our system can be properly used. A set

up phase was conducted and the values of those parameters

were empirically determined by using our knowledge about

the problem (see Table 1). Next, the experimental results are

presented.
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12 Pedro H. C. de Pádua et al.

5.1 Official Match Dataset

The first dataset consists of an image sequence captured

from an official futsal match, which contains 12,870 frames

and corresponds approximately to a 7 minute long video.

Official matches demand on greater physical loads compared

to training matches. Moreover, tactical approaches are ap-

plied and validated in real challenging game actions.

5.1.1 Players Detection Results

To evaluate the detection of players performed by our sys-

tem, we use the MODA CLEAR metric [21], which stands

for Multiple Object Detection Accuracy. This metric has be-

come one of the standards for the evaluation of object de-

tection algorithms in the computer vision area and utilizes

the number of missed detections (false negatives) and false

positive counts. We compute the number of false negatives

(FN), false positives (FP) and true positives (TP) based on an

overlap ratio between the annotated box in the ground truth

and the bounding rectangle of the i-th region in R where the

player was detected. For a given overlap ratio threshold τov,

a detection D is a true positive if [42]:

|Di∩Gi|
|Di∪Gi|

≥ τov, (14)

in which Di and Gi are the i-th mapped pair of detection and

ground truth.

The choice of the value τov varies with the evaluation

context. For larger objects, that cover several thousands of

pixels, values such as 0.5 or 0.7 are suitable for the thresh-

old. However, for small objects as in this work, in which

players have a mean size of 30× 20 pixels, even small de-

viations in size or position of the bounding box can induce

significantly less overlap [42]. In order to demonstrate the

impact of the overlap ratio threshold on the system’s perfor-

mance evaluation, we vary τov value between 0.1 and 0.5.

As the MODA metric is originally defined for single

frames, we can compute the Normalized MODA (N-MODA)

for the entire sequence as [21]:

N-MODA = 1− ∑
N f rames

t=1 (cFN ·FNt + cFP ·FPt)

∑
N f rames

t=1 NGt

, (15)

in which FNt is the number of false negatives, FPt is the

number of false positives and NGt is the number of objects

on the ground truth (TP + FN), all these three values related

to a given frame at time t. Thus, the false negative counts

at that time is given by the number of objects on the ground

truth for that frame minus the number of true positives found

in that image. On the other hand, the false positives in a

frame are calculated by subtracting the number of detected

objects in that frame by the number of true positives ob-

tained in the same image. The weights cFN and cFP, in turn,

can be viewed as cost functions used to weigh the impact of

false negatives and false positives, respectively. As in [21],

in this assessment, cFN and cFP are both equal to one.

Table 2 shows our players detection results for the Offi-

cial Match dataset. For clarity, we also calculate the F-Score

as the harmonic mean between precision (Pre.) and recall

(Rec.). Fig. 5 shows the impact of varying τov value over the

N-MODA and F-Score values and over the global mean er-

ror obtained. To calculate the global mean error, we firstly

compute the mean error in each frame. For each detection re-

garded as true positive, we calculate the Euclidean distance

between the foot position given by the bounding rectangle

of the detection and the foot position given by the annotated

box, both positions in court coordinates. Then, we calculate

the mean distance for the frame and finally the global error

is obtained by computing the average of the mean distances

obtained in each frame of the sequence.

Our results show that, lowest values of τov are more ap-

propriate and lead to significant values of N-MODA and F-

Score, as aforementioned, since the system handles small

objects in the scene. However, upon decreasing the thresh-

old value, there is an obviously increment on the error, since

larger deviations are allowed for true positive detections.

Those deviations are caused, generally, by our system merg-

ing the detections of two or more athletes or by partial de-

tection of the players. Still, the global mean error for the

players detection in this sequence is less than 30 cm, regard-

less of the overlap ratio threshold used. This is a promising

value, considering the dimensions of the court (38×19 m).

Moreover, this dataset is very challenging and imposes

several difficult situations in the detection process. A com-

plex situation, for instance, is that substitute players and

technical staff stay too close to the court area during the

games in this arena. Specifically, the substitutes warm-up

very close to the court boundaries and sometimes they even

step into the court. Thus, they are detected, which increases

the false positive counts. The same happens with coaches,

when they pass instructions to their teams. To handle this,

it is possible to narrow even more the region considered as

the playing area. However, this restriction also leads to inter-

ruptions on the detection of athletes that are moving on the

borders of the court or are performing a throw-in or a corner

kick, increasing the false negative counts in those cases.

We decided to not detect and track the two referees in our

system. In futsal, each referee moves sideways off the play-

ing area, close to the sidelines. Considering them in this as-

Table 2 Players detection results for the Official Match dataset.

τov TP FP FN Prec. Rec. F-Score N-MODA

0.1 6563 655 2032 0.909 0.764 0.830 0.687

0.2 6545 673 2050 0.907 0.762 0.828 0.683

0.3 6431 787 2164 0.891 0.748 0.813 0.657

0.4 6144 1074 2451 0.851 0.715 0.777 0.590

0.5 5576 1642 3019 0.773 0.649 0.705 0.458
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Fig. 5 Players detection results for the Official Match dataset, considering different values of overlap ratio threshold (τov). (a) N-MODA and

F-Score values as functions of the overlap ratio threshold used. (b) Global mean errors obtained according to the threshold used.

sessment would result in an additional cost to annotate their

positions and to check the data. However, the referees are

also a cause of some false positives. As mentioned earlier,

the arena where the sequences were recorded lacks on space

to accommodate the presence of substitute players, technical

staff and the referees on one side of the court. This way, very

often one of the referees moves over the sideline or even in-

side the court, being detected in such cases. Moreover, when

there is a foul or a player is injured, one of the referees (in

some cases, both) enters into the court to indicate the lo-

cation of the free-kick and to verify the athlete’s situation.

In those cases, the referee is also detected in several frames,

which increases the false positive counts. False positives are,

still, caused by the ball detection and the detection of some

light shadows not filtered in the process.

On the other hand, a major part of the false negatives are

caused by a large similarity between the floor of the court

(the background) and players’ uniforms. In some areas of

the court, the appearance of the athletes is not discriminative

enough to consider him/her as a foreground object. The im-

ages captured by our system’s camera also introduce some

difficulties in the process, since they are captured in low res-

olution and they appear blurred and have lots of noise in

some regions, making it difficult to detect the players. Fur-

thermore, there are also cases when two or more players are

very close to each other, and they are considered as a sin-

gle blob that generates only one valid detection, not being

treated by the recursive splitting of the bounding region, as

it still respects the geometric constraints. Nevertheless, the

results obtained are encouraging and demonstrate the poten-

tial of our approach to locate players in the images.

5.1.2 Players Tracking Results

In order to assess the players tracking results on a sequence,

we use the MOTA CLEAR metric [21], which stands for

Multiple Object Tracking Accuracy. This metric is also widely

applied in computer vision. Once more, we need to compute

the number of false negatives, false positives, true positives

and the number of identity switches for a given tracking

ground truth. We consider that a track is a true positive if

the Euclidean distance between the estimated position given

by the tracker and the feet position defined by the anno-

tated box is smaller than a certain threshold, τd . Similarly

to the detection, we vary the value of τd between 0.50 me-

ters and 1.75 meters, so that we can demonstrate the impact

of this threshold in the tracking performance evaluation. The

MOTA measure is given by [21]:

MOTA = 1− ∑
N f rames

t=1 (cFN ·FNt + cFP ·FPt + cID · IDt)

∑
N f rames

t=1 NGt

,

(16)

in which cFN , FNt , cFP, FPt and NGt are the same as defined

in Equation (15), and cFN = cFP = 1. However, the count of

false negatives, false positives and true positives occurs dif-

ferently. To increment the false negatives counts for a frame

at time t, the player must exist in the ground truth at that time

(i.e., he/she must be playing at that moment), but not has

been tracked by an identified tracker. To increment the true

positives counts for a frame at time t, the player must also

exist in the ground truth at that time, has been tracked by an

identified tracker and the Euclidean distance between his/her

estimated position and his/her ground truth position must be

smaller than τd . On the other hand, there are three different

ways to increment the false positive counts for a frame at

time t. The first one consists in the player to not exist in the

ground truth at that time and he/she has been tracked by a

previously identified tracker. In the second one, the athlete

exists in the ground truth at time t and was tracked by an

identified tracker, but his/her Euclidean distance is greater

than the threshold τd . Finally, we also add to the counts the
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14 Pedro H. C. de Pádua et al.

number of unwanted tracks, mostly caused by noise, given

by the subtraction, at time t, of the number of valid track-

ers (with detections associated to them for a γmin number of

frames) by the number of trackers identified by the operator.

Still regarding the Equation (16), the IDt value is the

number of identity switches in a given frame at time t and

cID is the weight considered for identity switches, with a

value of log10 as proposed by the authors in [21]. In case

the number of changes is equal to 0, we replace the factor

cID · IDt in Equation (16) by 0.

Table 3 shows our players tracking results for the Of-

ficial Match dataset. Similarly to the previous section, we

compute the F-Score measure to support our analyses. Fig.

6 shows the impact of varying the distance threshold τd over

the MOTA and F-Score values, as well as over the global

mean error obtained. We calculate this error in the same way

as the previous one, but now the Euclidean distance is given

between the estimated position of a true positive track and

the feet position defined by the box in the ground truth.

Our results show that the particle filter-based tracking is

able to track players and link their positions over time. As

expected, when we increase the distance threshold τd , more

tracks are considered as true positives, but the global error is

also increased, since we take into account tracks with larger

differences between the estimated position and the manu-

ally annotated position. Either way, the global mean error for

players tracking is less than 35 cm for this sequence, which

is again an outstanding result if we take into consideration

the size of the court. In addition, it is noteworthy that the

proposed methodology uses a smaller number of particles

(N = 350) than other solutions that perform players tracking

using particle filters (such as [30] that uses 500 particles),

what results in processing frames faster. Consequently, the

proposed system requires 25 milliseconds on average to pro-

cess a frame, on a computer with an Intel Core i7 processor

at 3.4 GHz, with 8 cores and 8GB of RAM.

In the experiments, we obtained successful tracking re-

sults for most part of the players. In situations where the tra-

jectories of two athletes cross quickly, the confusion caused

by the short proximity between them is resolved by the fil-

ter’s prediction, based on the motion model considered.

However, there are some situations in which the filter

leads to wrong estimates, mostly caused by detection prob-

lems. For example, when the players are not detected, or

they are very close to each other for a significant period of

Table 3 Players tracking results for the Official Match dataset.

τd TP FP FN ID Prec. Rec. F-Score MOTA

0.50 5358 2268 1702 115 0.703 0.759 0.730 0.437

0.75 6210 1416 1702 115 0.814 0.785 0.799 0.605

1.00 6548 1078 1702 115 0.859 0.794 0.825 0.663

1.25 6690 936 1702 115 0.877 0.797 0.835 0.685

1.50 6765 861 1702 115 0.887 0.799 0.841 0.697

1.75 6808 818 1702 115 0.893 0.800 0.844 0.703

time, being detected as a single blob that still meets the geo-

metric constraints. In such cases, the filter may switch their

identities, wrongly estimate their position or even the tracker

can be removed, since there is no associated detection to ad-

just its estimate during this time. Thus, players stop being

properly tracked. The detection of the ball and other objects

that cause false positives can also steal the tracker of a player

and spoil his/her tracking, since the observation does not dis-

tinguish those detections. This way, as futsal is a very com-

plex contact sport and given the difficulties in adjusting the

filter’s estimate, the operator assistance and his/her interven-

tion are key parts of the proposed system for achieve its goal.

In all previous cases, the system operator must undo any

confusion situations and manually re-identify each tracker,

so they can track again the corresponding athlete.

Table 4 shows the maximum, minimum and mean dura-

tions of the tracking for all players and for the sequence it-

self, before a tracker is removed or has its identity switched.

Players are numbered sequentially at the frame when the

match starts, from left to right and from top to bottom. Thus,

players from the team attacking from left to right are num-

bered from 1 to 5, and the ones attacking from right to left

are numbered from 6 to 10. The numbers of the goalkeep-

ers of each team in this sequence are 2 and 10, respectively.

In addition, there are some substitutions of players in the

match, during the recorded sequence. The substitutes who

subsequently come into play are numbered according to the

entry order, receiving numbers from 11 to 15 for the first

team and from 16 to 20 for the second one. Thus, for ex-

ample, the second substitute player to enter the game in the

second team gets the number 17. As shown in Table 4, the

lifespan of a tracker in this sequence is 4,635 frames in the

best case, 15 frames in the worst case and 283 frames on

average, what leads the operator having to make some inter-

ventions to restore the identifications of the trackers.

5.1.3 Statistical Data Computation

Before we present the statistical data for the Official Match

dataset, we describe the statistical test used to define the

Table 4 Tracking duration (in number of frames) for each player.

Player Largest duration Shortest duration Mean duration

1 1,085 16 225

2 1,908 15 243

3 1,044 15 243

4 1,049 15 201

5 1,030 15 245

6 2,112 15 326

7 1,691 22 463

8 1,500 17 495

9 4,635 15 456

10 499 16 88

11 309 16 135

16 1,290 54 351

17 432 25 143

18 1,089 30 343

Sequence 4,635 15 283
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Fig. 6 Players tracking results for the Official Match dataset, considering different values of distance threshold (τd). (a) MOTA and F-Score values

as functions of the distance threshold used. (b) Global mean errors obtained according to the threshold used.

frame rate for physical data calculation. Moreover, we eval-

uate the error we get for physical data when we use the cen-

troid of the bounding rectangle of the detection and when

we use the feet position given by this rectangle. To deter-

mine the configuration that minimizes the errors in those cal-

culations, we use the Analysis of Variance (ANOVA) [29].

The analysis of variance performed has two factors, with

the first one having two levels (feet position or centroid po-

sition), and the second one having three levels (the possible

sampling rates for computing the physical statistics, namely,

every 5, 10 or 15 frames).

To obtain the samples used in ANOVA, we recorded

seven extra sequences with different durations, during a train-

ing session. In those videos, we asked two athletes to travel

predefined trajectories on the court, so that the distances

covered by them were known. We also asked the players

to move as in a real game, that is, varying times when they

were running, walking or standing still on the court. Then,

each player in each sequence was tracked by our system and

the results for the traveled distances were computed. As the

speeds are derived from the distance data, only these latter

were evaluated in the test. Finally, we computed the errors

for the estimated traveled distance by each player in each

sequence and we performed the analysis of variance.

The result of the ANOVA has shown that, with 95% of

significance, there is no statistical evidence that there is a

difference between using the centroid or the feet. Thus, as

the feet position can better represent the athlete’s position

on court in the heat map, dealing with the properties of im-

ages formed by perspective projection, we decided to use it

in the system. On the other hand, the ANOVA pointed out

with the same level of significance that there is, indeed, dif-

ferences when we use sampling rates of 5, 10 or 15 frames.

In order to define which rate introduces the smallest error,

we perfomed a multiple comparison test called Tuckey’s test

[29]. This test has demonstrated, again with 95% signifi-

cance level, that the 15 frames rate produces the smallest

error, and for this reason was the one used by our system.

That said, we present in the following the statistical data

computed for the Official Match dataset. Table 5 shows the

physical data extracted for each player in this sequence. The

numbering of athletes remains the same from previous sec-

tion. To calculate the errors, we subtract the statistics ob-

tained by our system from their corresponding ones in the

ground truth. Finally, we divide the results of those subtrac-

tions by the statistics present in the ground truth. If an error

has a negative value, the value of its corresponding statistic

is less than the expected value, given the manually anno-

tated positions on the ground truth. Similarly, an error with

positive value means that its corresponding statistic exceeds

the expected value for it. In addition to the individual values

of each player, we also calculate the global error for the se-

quence, as the root mean square error (RMSE). As we can

see in the Table 5, this sequence has a mean error of 8.16%

for the distance traveled by the players, 8.85% for the mean

speed of the athletes and 15.46% for the maximum speed.

Considering the complexity of futsal and the difficulties en-

countered by the system in players detection and players

tracking tasks, those results are very encouraging.

Regarding the errors observed, their occurrences are re-

lated to several factors. Negative errors for the distance are

mainly related to players that are not detected and tracked

for several frames, given the high similarity of their uni-

forms with the court floor, for example. This obviously re-

duces the estimated distance. On the other hand, the absence

of a detection to adjust the filter’s estimate and the problem

of size changes of the bounding rectangle can increase the

traveled distance for a player beyond the expected. In addi-

tion, the possible theft of a tracker by the ball or by other

false positives and the identity switches also contribute to

change the statistics values, until the operator can undo those

confusion situations. As the calculation of players’ speeds is
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16 Pedro H. C. de Pádua et al.

Table 5 Physical data estimated for each player in the Official Match dataset. Errors are relative to the data calculated by the ground truth positions.

Player Dist. Dist. Error Mean Speed Mean Speed Error Max. Speed Max. Speed Error

(m) (%) (Km/h) (%) (Km/h) (%)

1 744.24 2.0 6.25 2.2 29.79 11.8

2 354.54 5.7 2.98 5.8 22.95 48.1

3 629.35 -3.8 6.42 -2.7 25.49 7.0

4 682.42 0.2 5.74 0.5 23.21 -1.9

5 641.70 1.8 5.42 2.5 29.98 20.3

6 686.39 5.8 6.35 5.8 32.80 -4.7

7 721.31 0.7 7.26 1.0 25.19 -14.6

8 663.67 3.9 7.54 4.2 25.91 -6.0

9 841.91 3.6 7.07 3.7 25.33 -1.8

10 259.87 -25.7 2.20 -25.1 16.60 8.5

11 105.73 0.1 5.72 6.1 19.10 8.8

16 223.66 8.8 7.53 11.8 19.69 1.6

17 69.67 6.6 6.35 10.7 18.37 -0.7

18 134.73 5.9 7.08 7.5 19.35 -1.6

Sequence - 8.16 - 8.85 - 15.46

(RMSE)

directly related to the computation of the players’ traveled

distances, those problems are also reflected in those data.

The maximum speed, specifically, is mostly affected by such

situations. For example, when a tracker happens to track the

ball, instead of a tracking the player, obviously the maxi-

mum stored speed will be much higher than that performed

by the athlete. In general, when there is an identity switch,

the tracker changes its position very quickly in a short period

of time, which also results in erroneous values for the maxi-

mum speed. A tracker that is lost (with no detection associ-

ated to it) and then starts to be associated with detections that

are distant to it, also makes a rapid change in its position,

thus generating an unreal value of maximum speed for the

player. Regarding the tactical data, Fig. 7(a) shows an exam-

ple of the resulting heat map for a first-team player (number

4) with mean error for physical data in this sequence. To as-

sess the quality of the heat map, we draw black points over

the image with positions given by the manually annotated

coordinates in the ground truth of the player (see Fig. 7(b)).

From Fig. 7(b), we note that the heat map contains most

part of the ground truth points and it is able to describe the

occupancy of the player. Regions in red and yellow con-

centrate a large number of points very close to each other,

which reveals that the player was present more often in those

places. Regions where he/she was present for a short period

of time are blue and contains less and more spaced points.

Some ground truth points are present in regions where the

player was not tracked and, similarly, the tracker recorded

the passage of the player in other parts of the image, but the

athlete was not really present in those locations. Some devi-

ations between the estimated and the ground truth positions

are caused by the tracking errors discussed previously.

5.2 Training Match Dataset

The second dataset used consists of an image sequence cap-

tured from an training futsal match, which contains 13,320

frames and, similarly to the Official Match dataset, corre-

sponds approximately to a 7 minute long video. Training

matches are used to improve technical and tactical skills, to

complement the physical training or even for non competi-

tive periods during the season. In a training match, physical

and tactical aspects may be detailed analyzed, especially, if

the players’ statistical data are provided.

Given that a training match is a more controlled sce-

nario, we have asked the technical staff and substitute play-

ers to remain outside the court area and that substitutions

were not made during the match. In case of an interrup-

tion event, such as fouls, corners or after goals scored, the

game was restarted as soon as possible. The players were

also asked to wear futsal training vests a little more dis-

criminating than their usual uniforms, in order to facilitate

their detection by our system. Finally, there were no refer-

ees present. Since there were no ”intruders” near the court’s

boundaries, the restrictions with respect to the playing area

were relaxed, so that a player could get out of the pitch and

still be detected, up to a maximum of 2.5 meters away.

5.2.1 Players Detection Results

To evaluate the detection of players in the Training Match

dataset, we used again the MODA CLEAR metric [21], de-

scribed in Section 5.1.1. Table 6 shows the players detection

results obtained. The N-MODA and F-Score measures, as

well as the global mean error were calculated in the same

manner as in Section 5.1.1. Fig. 8 shows the impact of vary-

ing τov value over the N-MODA and F-Score values and over

the global mean error obtained. Note that the N-MODA and

F-Score values are larger for the training match than for the

official match for all values of τov considered. This was ex-

pected, since in the training match, the number of correct

detections is superior, while the numbers of false positives

and false negatives are smaller in almost all levels. However,

note that the global mean error obtained was larger than the

one computed for the official match, for all values of τov
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(a) (b)

Fig. 7 (a) Heat map of player 4 in the Official Match dataset. (b) Heat map of player 4 overlaid by the annotated player’s positions (black points).

considered. This can be explained by the larger number of

true positives obtained in the Training Match dataset.

The reduction in the number of false positives may be

explained by the absence of referees, technical staff mem-

bers and substitute players in the court area. However, the

ball still was detected in some frames, as well as some play-

ers shadows that were not completely removed in the de-

tection process. Additionally, in situations where multiple

players were very close to each other and were detected as

a single blob, the recursive splitting process could gener-

ate additional incorrect bounding boxes, that did not corre-

spond exactly to the regions of the players. This has also

contributed to the number of false positives obtained.

On the other hand, the training vests contributed to the

their detections in some areas of the court, resulting in fewer

false negatives. Finally, the relaxation of the court’s dimen-

sions has contributed to the detection of players that moved

near the boundaries of the court and, thus, to the reduction

in the number of false negatives as well.

5.2.2 Players Tracking Results

As performed in Section 5.1.2, we have evaluated the play-

ers tracking results in the Training Match dataset by using

the MOTA CLEAR metric [21]. Table 7 presents the players

tracking results obtained. The MOTA and F-Score measures,

as well as the global mean error were calculated in the same

manner as in Section 5.1.2. Fig. 9 shows the impact of vary-

ing τd value over the MOTA and F-Score values and over the

global mean error obtained. Again, the MOTA and F-Score

values are larger for the training match than for the official

match for all values of τd considered. The improvement in

the tracking results for the training match is directly related

Table 6 Players detection results for the Training Match dataset.

τov TP FP FN Prec. Rec. F-Score N-MODA

0.1 7787 308 1152 0.962 0.871 0.914 0.837

0.2 7771 324 1168 0.960 0.869 0.912 0.833

0.3 7603 492 1336 0.939 0.851 0.893 0.796

0.4 7072 1023 1867 0.874 0.791 0.830 0.677

0.5 6126 1969 2813 0.757 0.685 0.719 0.465

to the improvement in the players detection. Nevertheless,

once again, the global mean error obtained was larger than

the one computed for the official match, for all values of

τd considered. The reason for this increase is the same one

pointed out in Section 5.2.1 and is directly related to the in-

crease in the number of true positives. Anyway, the values of

errors determined are less than 40 cm, what is a promising

result considering the court’s dimensions.

Finally, Table 8 shows the maximum, minimum and mean

durations of the tracking for all players and for the sequence

itself, before a tracker is removed or has its identity switched.

Players are numbered following the procedure described in

Section 5.1.2. Given the players detection improvements and

the consequent reduction of some problems in the tracking,

it was possible to increase the maximal and mean lifespans

of a tracker for this dataset. As shown in Table 8, the lifespan

of a tracker in this sequence is 5,724 frames in the best case,

15 frames in the worst case and 795 frames on average.

5.2.3 Statistical Data Computation

Table 9 shows the physical data extracted for each player in

the Training Match dataset. The numbering of athletes re-

mains the same from previous sections and the errors are

calculated as described in Section 5.1.3. With the improve-

ments in detection and tracking of athletes, we have reduced

the RMSE for this dataset to 5.77% for the distance covered

and 5.84% to the mean speed of the players. However, the er-

ror with respect to the maximum speed increased to 24.21%,

what is justified by a higher occurrence in this dataset of

events, such as, the theft of a tracker by the ball and iden-

tity switches. Note that as players are detected and tracked

Table 7 Players tracking results for the Training Match dataset.

τd TP FP FN ID Prec. Rec. F-Score MOTA

0.50 5608 2784 876 71 0.668 0.865 0.754 0.435

0.75 7052 1340 876 71 0.840 0.890 0.864 0.720

1.00 7640 752 876 71 0.910 0.897 0.904 0.809

1.25 7864 528 876 71 0.937 0.900 0.918 0.839

1.50 7963 429 876 71 0.949 0.901 0.924 0.852

1.75 8007 385 876 71 0.954 0.901 0.927 0.858
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Fig. 8 Players detection results for the Training Match dataset, considering different values of overlap ratio threshold (τov). (a) N-MODA and

F-Score values as functions of the overlap ratio threshold used. (b) Global mean errors obtained according to the threshold used.

for more frames on this dataset, the majority of errors for

the distance traveled are positive. The exception to this ob-

servation is the goalkeeper (number 10), who is frequently

located in a blurry and noisy part of the image plane, thus

making his detection and tracking harder by our system.

6 Concluding Remarks

This work presents a new system to support tactical and

physical analyses of futsal teams based on computer vision.

Unlike other approaches in literature, the proposed system

uses a single stationary camera that captures top-view im-

ages of the court. This configuration provides some advan-

tages. Firstly, the images obtained by a camera arranged in

this manner minimize the effects of occlusion between the

players, which can greatly hamper the tracking of athletes.

Furthermore, the use of a single camera may reduce the

computational complexity of the system and the costs for

acquisition and installation.

An adaptive background subtraction technique based on

Gaussian mixture is used to detect players. This technique

was very effective to find the regions that correspond to the

players, without an expensive training phase as performed

by other approaches and without having to manually specify

the objects in the scene that must be found. However, some

Table 8 Tracking duration (in number of frames) for each player.

Player Largest duration Shortest duration Mean duration

1 5724 1530 3319

2 3000 90 1018

3 2142 30 730

4 1770 30 728

5 2979 30 876

6 1140 15 210

7 1956 15 304

8 1305 16 276

9 1584 17 294

10 1697 15 192

Sequence 5724 15 795

difficulties arising from the use of background subtraction

were found during the experiments. A key one is the fail-

ure to detect players when some of them are very close. In

this case, the subtraction operation may provide a unique re-

gion, which results in only one valid detection containing

all players. To make this problem manageable, we have ap-

plied a recursive splitting approach of that region, based on

geometric characteristics of the players.

Another important reason observed for the non-detection

of players was the high similarity of their appearances to

some areas of the court. This problem was intensified by the

characteristics of the camera used in our experiments. The

images acquired had low resolution and sometimes were

blurred and noisy. Additionally, the system performed some

undesirable detections of the ball and shadows that had not

been appropriately removed. Despite these complications, it

was possible to perform the detection of athletes efficiently

and accurately. The system has obtained good values for the

N-MODA and F-Score measures in our experiments, as well

as global mean tracking errors below 40 cm, which is a quite

positive result when the court’s dimensions are considered.

The particle filter method was successfully used to con-

nect the detections of players in successive frames and make

their tracking. In fact, most of the players trajectories in the

datasets have been accurately estimated. The mean track-

ing times for the Official Match and Training Match datasets

were 283 frames and 795 frames, respectively. This means

that the system has demanded on some interventions of its

operator to re-identify the trackers and undo situations of

confusion. In most cases, tracking errors were caused by the

absence of a measurement able to adjust the estimate of the

filter, or by the fact that the observation model did not dis-

tinguish between the characteristics of the measurements.

Despite all the difficulties faced, our system was capable

to extract the tactical and physical information of interest.

The errors obtained for the players distances covered and
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Fig. 9 Players tracking results for the Training Match dataset, considering different values of distance threshold (τd). (a) MOTA and F-Score

values obtained and the impact of the distance threshold on the results. (b) Global mean errors obtained according to the threshold used.

mean speeds are of the order of 8% for the Official Match

dataset and 5% for the Training Match dataset, demonstrat-

ing the high potential of our system. However, the estimate

of the maximum speed was more sensitive to errors, thus

having errors on the order of 15% and 24% for the Official

Match and Training Match datasets, respectively.

As future work, we plan to implement new methods to

manage identity switches and tracking interruptions, so that

fewer interventions by the system operator are necessary and

our solution can be used in real time. To achieve this goal,

we intend to explore alternative players detection and track-

ing methods. We also intend to investigate the use of alter-

native motion models that can better capture the dynamics

of futsal players and be used in the propagation of parti-

cles in our players tracking module. Moreover, we intend to

apply data mining algorithms on the collected data, to ex-

tract semantic information that is not directly obtained by

simple observation. We believe that this information may

reveal valuable strategies as, for example, the players posi-

tions in the court that are more likely to result in a goal. This

kind of approach could be considered as an additional ef-

fort of the emerging field of sports spatiotemporal analytics

[27]. Aproaches from that field will can develop robust rep-

resentations from noisy or impartial data of a match, learn

team behaviors in an unsupervised or semi-supervised man-

ner and predict future behaviors. This will certainly improve

decision making in different sports areas, such as, coaching,

broadcasting and betting.
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by identification using computer vision and radio. Sensors 13(1),

241–273 (2012)

29. Montgomery, D.C.: Design and Analysis of Experiments. John

Wiley & Sons (2006)

30. Morais, E., Ferreira, A., Cunha, S.A., Barros, R.M., Rocha, A.,

Goldenstein, S.: A multiple camera methodology for automatic

localization and tracking of futsal players. Pattern Recognition

Letters 39, 21–30 (2014)

31. Naemura, M., Fukuda, A., Mizutani, Y., Izumi, Y., Tanaka, Y.,

Enami, K.: Morphological segmentation of sport scenes using

color information. IEEE Transactions on Broadcasting 46(3),

181–188 (2000)

32. Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking-linking

identities using bayesian network inference. In: Conference on

Computer Vision and Pattern Recognition, pp. 2187–2194 (2006)

33. Niu, Z., Gao, X., Tian, Q.: Tactic analysis based on real-world ball

trajectory in soccer video. Pattern Recognition 45(5), 1937–1947

(2012)
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